Multistage Adaptive Estimation of Sparse Signals
نویسندگان
چکیده
منابع مشابه
Sparse signals estimation for adaptive sampling
This paper presents an estimation procedure for sparse signals in adaptive setting. We show that when the pure signal is strong enough, the value of loss function is asymptotically the same as for an optimal estimator up to a constant multiplier.
متن کاملOnline adaptive estimation of sparse signals: where RLS meets the l1-norm
Using the -norm to regularize the least-squares criterion, the batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications where observations adhere to parsimonious linear regression models. To cope with high complexity, increasing memory requirements, and lack of tracking capability that bat...
متن کاملAdaptive Estimation of Sparse Signals : where RLS meets the l 1 - norm †
Using the l1-norm to regularize the least-squares criterion, the batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications where observations adhere to parsimonious linear regression models. To cope with high complexity, increasing memory requirements, and lack of tracking capability that b...
متن کاملAdaptive Estimation of Signals of Opportunity
To exploit unknown ambient radio frequency signals of opportunity (SOPs) for positioning and navigation, one must estimate their states along with a set of parameters that characterize the stability of their oscillators. SOPs can be modeled as stochastic dynamical systems driven by process noise. The statistics of such process noise is typically unknown to the receiver wanting to exploit the SO...
متن کاملRobust adaptive parameter estimation of sinusoidal signals
A novel two step adaptive identification framework is proposed for sinusoidal signals to estimate the unknown offset, amplitude, frequency and phase, where only the output measurements are used. After representing the sinusoidal signal as a linearly parameterized form, several adaptive laws are developed. The proposed adaptive laws are driven by parameter estimation error information that is de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing
سال: 2013
ISSN: 1932-4553,1941-0484
DOI: 10.1109/jstsp.2013.2256105