Multistage Adaptive Estimation of Sparse Signals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse signals estimation for adaptive sampling

This paper presents an estimation procedure for sparse signals in adaptive setting. We show that when the pure signal is strong enough, the value of loss function is asymptotically the same as for an optimal estimator up to a constant multiplier.

متن کامل

Online adaptive estimation of sparse signals: where RLS meets the l1-norm

Using the -norm to regularize the least-squares criterion, the batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications where observations adhere to parsimonious linear regression models. To cope with high complexity, increasing memory requirements, and lack of tracking capability that bat...

متن کامل

Adaptive Estimation of Sparse Signals : where RLS meets the l 1 - norm †

Using the l1-norm to regularize the least-squares criterion, the batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications where observations adhere to parsimonious linear regression models. To cope with high complexity, increasing memory requirements, and lack of tracking capability that b...

متن کامل

Adaptive Estimation of Signals of Opportunity

To exploit unknown ambient radio frequency signals of opportunity (SOPs) for positioning and navigation, one must estimate their states along with a set of parameters that characterize the stability of their oscillators. SOPs can be modeled as stochastic dynamical systems driven by process noise. The statistics of such process noise is typically unknown to the receiver wanting to exploit the SO...

متن کامل

Robust adaptive parameter estimation of sinusoidal signals

A novel two step adaptive identification framework is proposed for sinusoidal signals to estimate the unknown offset, amplitude, frequency and phase, where only the output measurements are used. After representing the sinusoidal signal as a linearly parameterized form, several adaptive laws are developed. The proposed adaptive laws are driven by parameter estimation error information that is de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Signal Processing

سال: 2013

ISSN: 1932-4553,1941-0484

DOI: 10.1109/jstsp.2013.2256105